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Intermittency is usually identified in turbulent flows as non-Gaussian tails of the probability density func-
tions (PDFs) of the turbulent field derivatives. Here we investigate the role of phase coherence among the
Fourier modes in creating intermittency in magnetized space plasmas using the technique of surrogate data. We
apply the technique to two examples: (i) synthetic data and (ii) magnetic field fluctuations recorded in the
terrestrial magnetosheath by the Cluster spacecraft. We use a set of four series of data, one observed and three
surrogate, and their PDFs and moments (¢ <4) as discriminating statistics. We show that the technique allows
for detecting coherent structures and estimating their scales. We show furthermore that the phases, but not the
amplitudes, create the non-Gaussian tails of the PDFs. We show also that the surrogate data used cannot
account for asymmetries of the PDFs of the observed data. This enables us to confirm a scenario of turbulent
cascade of mirror structures proposed in previous publications, by showing the existence of an approximately

constant energy flux in the inertial range.
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I. INTRODUCTION

Turbulence in magnetized space plasmas has been studied
extensively over the past several years to understand its role
in fundamental processes such as mass transport, energy dis-
sipation, and magnetic reconnection [1-6]. In the solar wind
and in the terrestrial magnetosphere, the Cluster space craft
data have made it possible to reveal new properties of mag-
netic turbulence, in particular its three-dimensional spatial
spectra [7—11]. However, these energy spectra (where phases
are missed) cannot fully characterize nonlinear interactions
of plasma waves. The same holds for related quantities such
as the autocorrelation functions or the wavelet coefficients
[12]. For instance, they cannot account for the strength of
nonlinearities (weak or strong) important in theoretical mod-
eling of turbulence, or prove the presence of energy cas-
cades. Very often, observations of power law spectra are
promptly interpreted as signatures of turbulent energy cas-
cades. Yet, as we will show below, power law spectra can
also be created by single coherent structures with which no
energy cascade or inertial range can be associated.

Here we propose to go further by analyzing the Fourier
phases of turbulence and study their role in creating intermit-
tency as well as in the energy cascade. From the theoretical
point of view, phases are known to be the vehicle for non-
linear interactions and energy transfers between different
eigenmodes and scales of any dynamical system. One would
therefore investigate the structure of the phases in order to
detect nonlinearities [13,14]. Yet, in space-plasma turbulence
very limited work exists on the use of phases as potential
tracers of nonlinearities. The reason why the phases are sel-
dom used is probably because they usually appear to be com-
pletely random (due to their dependence on an arbitrary time
origin and to 27 ambiguity) [12,15-17].
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Making it possible to study phase coherence properly is
an important issue regarding theories of weak turbulence.
Indeed, these theories generally use the random phase ap-
proximation (RPA) to derive power law spectra of turbulence
[18-20]. While the predicted spectra are often compared to
various astrophysical observations, to the best of our knowl-
edge, no test has been proposed to check within data the
validity of the RPA and thus to determine the applicability
limit of weak turbulence models when used to describe
space-plasma turbulence [21,22].

II. SURROGATE DATA TECHNIQUE

The technique of surrogate data, named also the null hy-
potheses method, is widely used in the dynamical systems
community [13,14,23]. We first review its major principles
before showing the specific use and adaptations we have in-
troduced in the present work. Given an observed time series
Bo(#) we formulate null hypotheses against which B(z) is
tested; here that B (¢) is coherent or By (t) is random. Then
we build a surrogate signal that satisfies each hypothesis:
Bg(1) for random and B(r) for coherent. We impose, how-
ever, the requirement that Bg(7) and B(z) share the autocor-
relation function of B(#) (or, equivalently, its Fourier ampli-
tudes). Then, a set of discriminating statistics is computed
for both the original and the surrogate data. If the value
obtained for B,(7) is significantly different from that of a
surrogate signal then the corresponding hypothesis is re-
jected.

In practice, we perform a windowed Fourier transform of
the signal B(¢) which yields the amplitude spectrum |B(f)|
and the phases ®,(f). We create two sets of phases: coherent
phases (i.e., with a linear dependence on the frequency)
®(f) and randomly distributed phases ®g(f). Then, using
an inverse Fourier transform 7' we reconstruct two surro-
gate signals sharing the same power spectrum |B(f)|, but
having different phases: Bc(t)=F""[|B(f)|e”®c"] and
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Br()=F'[|B(f)|e”®x"]. In order for the inverse Fourier
transform to be real (no imaginary part) we impose the sym-
metrization of the phases ®(—f)=—®(f). The window func-
tion is introduced here to minimize the boundary effect when
determining the Fourier coefficients. The window chosen is a
cosine cube-tapered rectangle function: a rectangle function
over 80% of the studied time interval 7, which tapers off as
a cos® function over 10% at each end of 7. This is shown to
be the most appropriate window for the purpose of this work.

In addition to the three previous data sets we use a fourth
one, Bppp(f), constructed by a random shuffling of B(z).
This implies that the two signals share the same probability
density function (PDF) of the data, but the Fourier spectrum
is no longer conserved. Random shuffling ensures that any
existing correlation among the amplitudes and the phases in
the data is destroyed.

Because the purpose here is to relate phase coherence to
intermittency we use the PDFs of the increments and their
moments, or, equivalently, their structure functions (SFs)
S(g,7) as discriminating statistics between the different hy-
potheses:

Si(q, ) =(|8Bi(t,7)|*), = (|Bi(t + 7) = B(1)|"),.

Here i € [O,R,C,PDF], 7 is the time lag, and the angular
brackets denote a time average. Use of the moments of the
PDFs of increments is very common in intermittency studies.
However, as we will show below, using in addition appropri-
ate surrogate data as “experimental boundary conditions” al-
lows for additional insights and can help avoid pitfalls and
misinterpretations of the data.

To quantify the differences between the SFs of the differ-
ent signals for each order g we introduce a general index of
coherence Cg(q, 7) that measures the “relative distances” be-
tween the curves Sy(q,7), Sg(q,7), and Sc(q,7):

|So(51’ T) - SR(q’ T)| ) g

Cola-D ( 007~ Su(a. 9|+ S0la.7) ~ Scla. )
Co(q,7)=1(0) for a coherent (random) signal. The power
1/q is introduced to give equal weight to each order of the
SF when comparing the results given by each order of
Co(q,7). Sppr(g,7) cannot be used in this estimation of co-
herence as Bppg(f) does not conserve the same power spec-
trum |B(f)|. However, it will be introduced below for
comparisons between the PDFs of the different data sets. For
g=1 this coefficient is comparable to the one used in [15,17].
We notice here that because the three data sets have the
same variance (or power spectrum) the equality
So(2,7)=Sg(2,7)=54(2,7) is theoretically satisfied [i.e.,
S(2,7) is not phase dependent] [24]. Therefore, S;(2,7) can-
not discriminate between different natures of phases. How-
ever, any departure from the equality above can be attributed
to statistical errors in estimating the SF (finite length of time
series, nonstationarity, etc.). We propose therefore to use
S/(2,7) as a measure of the accuracy in the determination of
the SF. We define the quality factor Q(7) as the variance of
the different realizations of S(2, 7):
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FIG. 1. (a) Original signal B(z); (b) and (c) two surrogate data
sets Bg(#) and B(#) with random and coherent phases.
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Q(7)~0 (or ~1) reflects a minimum (or maximum) discrep-
ancy between the S(2,7) of the three data sets. Under the
hypothesis that the errors in calculating S(2,7) occur for
other orders of the SF, Q(7) provides a simple way to quan-
tify noise at large scales due to the finite length of the time
series, providing thus an estimation of the largest scale 7,
for which one can calculate the SF. If we consider reliable
only scales for which Q(7) <10%, then we generally obtain
in the present study 7,,,,~7/4.

III. PHASE COHERENCE AND INTERMITTENCY

Let us start first with a simple example to illustrate how
the technique works. Consider a signal composed of a coher-

ent structure (~e‘t2) and a random noise of 10% of the am-
plitude of the structure [Fig. 1(a)]. Two surrogate data sets
are generated as described above [Figs. 1(b) and 1(c)]. The
coherent signal B(r) is unsurprisingly akin to B(f), since
By(t) contains a coherent structure by construction. How-
ever, the amplitude of the structure in B(7) is higher because
the random noise is suppressed while the power spectrum is
conserved [|Bo(f)|=[Bc(/)]].

Figure 2 shows the four first-order SFs of By(t), Be(1),
and Bg(7). As we can observe, the curves Sy(g,7) have a
random behavior at small scales and depart from the random
curves Sg(g,7) toward the curves Sq(g,7) at scales close to
the scale of the structure [Fig. 2(a)]. This can be explained
by the dominance of random fluctuations at small scales
whereas a coherent structure is detected at larger ones. This
is confirmed by the coherence index, which vanishes at small
scales and reaches its maximum value Cg(g,7)~0.9 for
7~20 s (Fig. 3). It is worth noticing that higher-orders SFs
show the same level of coherence. This suggests that the
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FIG. 2. SFs of observed data By(r) (solid line) and surrogate
data: Bg(?) (dotted line), B(¢) (dashed line).

first-order SFs of the observed and the surrogate data would
be sufficient to characterize phase coherence. We will return
to this issue further below. Figure 3 shows also how accu-
rately the three data sets reproduce the power spectrum or the
variance shown in Fig. 2(b). The discrepancies are found to
be less than 10% in the studied interval of scales. This ex-
ample shows the capability of the method to detect both
random fluctuations and coherent structures and determine
their scales. Other tests (not shown here) have been per-
formed and have confirmed the robustness of the method.
Consider now the magnetic field data measured by the
Cluster satellite on February 18th, 2002 about 5:10 UT [Fig.
4(a)]. The data were recorded in the magnetosheath (part of
the solar wind that is downstream of the terrestrial bow
shock). These data have been studied in previous work and
shown to be dominated by mirror modes [10,25]. Mirror
modes are compressible, nonpropagating modes that grow in
a hot plasma because of an ion temperature anisotropy. In
that work, based only on the study of the power spectra and
the derived dispersion properties, a k™83 power spectrum was
found [10]. A scenario of turbulent cascade of the mirror
modes was then suggested to explain the observed power
law. However, this scenario has not been proved. Moreover,
the question whether the observed mirrors are randomlike
modes or coherentlike structures could not have been an-
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FIG. 3. (Color online) Coherence index Cq(g, 7) estimated from
different orders of the SF: Cq(1,7) (black), Cg(3,7) (green), and
Cop(4,7) (red). The blue curve is the quality factor Q(7) of estima-
tion of the SF.
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FIG. 4. (a) Magnetic field fluctuations measured by the Cluster
spacecraft in the terrestrial magnetosheath, in the direction parallel
to the local magnetic field. (b), (c) Two surrogate data sets Bg(#) and
B(#) with random and coherent phases. The three signals, however,
share the same power spectrum.

swered using only the power spectra. Here we go further in
answering these questions, which are important regarding
theoretical modeling of mirror modes [26].

The two surrogate data sets Bg(z) and B(¢) are presented
in Figs. 4(b) and 4(c). The SFs of the four data sets are
shown in Figs. 5(a)-5(d) with approximate power laws. First,
notice that S(q,7) show two regions with different scaling
laws: a flat zone with a slope n~0 at large scales (7=38 s)
and a clear power law at smaller scales with a slope n
~1.5. For S,(2,7) this results in power law scaling of the
Fourier amplitudes B>(f) ~ f~¢ with two different slopes, re-
spectively @~ 1 and a~2.5, since a=n+1 [24]. The spec-
trum f~!' reflects the absence of correlations at large scale
(i.e., the increments of the fluctuations are Gaussian). This is
confirmed by the SFs of the signal Bppp(z) which fit well
those of the observed data B(r) at large scales (Fig. 5).
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FIG. 5. (Color online) The SF of observed data set B () (solid
line) and the surrogate data sets Bg(¢) (dotted line), Bo() (dashed
line), and Bppp(?) (red line). Power laws are shown for comparisons
(blue lines).
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FIG. 6. (Color online) Coherence index estimated from different
orders of the SF: Cy(1,7) (black), Cg(3,7) (green), Cg(4,7) (red).
The blue curve is the quality factor Q(7).

For scales below 8 s we observe, however, a clear dis-
crepancy between Sppr(q, 7) and the SFs of the other signals,
indicating that correlations in the amplitudes form [as B(z),
B(t), and Bg(7) have power law spectra, but not Bppg(?)].
Furthermore, for the same scales S,(g,7) depart slightly
from Sp(g,7) and approach Sc-(q,7), which indicates that
phase coherence forms. This can be seen on Fig. 6 where the
coherence indices Cq(q,7) almost vanish at large scale (al-
though some noise is observed), and then increase signifi-
cantly for 7~ 8 s and smaller scales, before they saturate for
7<0.5 s. Both the change of the scaling and the appearance
of coherence below 7~ 8 s suggest that nonlinear effects are
at work and correlations among the fluctuations form. As in
the previous example, we can see that all orders of the SF
give very similar results, although Cg(4,7) provides a
slightly higher level of coherence. Note that the surrogate
data reproduce the power spectrum with an accuracy better
than 95% for the studied scales. Figure 3 (where coherence is
detected at large scales) and Fig. 6 (where coherence is de-
tected at small ones) prove the capability of the method to
detect coherent structures without prior assumptions on the
range of scales involved. We notice that the interpretation the
of time lags 7 as spatial scales is based upon the Taylor
hypothesis /~v7 (v is the plasma flow velocity), which is
valid in this particular case of mirror structures [10]).

It is worth recalling here that it has been shown in [10]
that the maximum of the mirror instability is observed at the
scale 7~ 8 s and an inertial range forms down to the scale
7~0.5 s. The corresponding inertial range in wave number
was shown to span from k,p~0.3 (L~ 1800 km) to k,p
~3.5 (I~150 km), where k, is the wave number along the
flow direction and p~75 km is the proton gyroradius. This
agrees remarkably well with the results obtained above on
phase coherence of the mirror modes. Also, the scaling in
wave number k=33 obtained by the k-filtering technique is
very close to the scaling we can derive here from Fig. 5(b):
S(2,7~7>~1'3 yielding B(k) ~ k™.

To relate these observations to intermittency we compare
the PDFs of the increments of the four data sets calculated
for different time lags 7. Here, we show the results for two
scales, 7~ 1 and ~45 s, which have been chosen to fall into
the inertial range (where coherence is increasing) and the flat
zone (where coherence is absent). As we can see, By(r) has
almost a Gaussian distribution at large scale and departs
from Gaussianity at small scales where clear tails appear
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FIG. 7. (Color online) PDFs of the derivatives of By(r) (a), (b),

Bg(1) (c), (d), Bc(1) (e), (f) and Bppg(z) used as a Gaussian fit (red

curve). All PDFs are normalized to their respective variances. Two
time scales are chosen: 7~45 (left panel) and ~1 s (right panel).

[Figs. 7(a) and 7(b)]. On the other hand, the PDFs of Bg(r)
are Gaussian at both large and small scales [Figs. 7(c) and
7(d)], whereas the PDFs of B(t) exhibit clear non-Gaussian
tails at the same scales [Figs. 7(e) and 7(f)]. These observa-
tions prove that the phases are responsible for creating inter-
mittency while the amplitudes have no significant role.

This result can be confirmed by a direct measure of inter-
mittency given by the flatness F(7)=S(4,7)/S(2,7)? [24].
For a Gaussian process F(7)=3. The flatness of the four sig-
nals are presented in (Fig. 8). The signal Bg(¢) is shown to
have the flatness of a Gaussian process, whereas that of B (t)
departs clearly from this value at the scale 7~ 8 s and below
in total agreement with the phase coherence estimation given

0.1 1.0 10.0
7 (s)

FIG. 8. (Color online) Flatness of B () (solid line), Bg(r) (dot-
ted line), B(r) (dashed line), and Bppg(7) (red line). The flatness of
B(?) is, however, normalized to 10 to fit with the plot range.
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above. B(7) in turn shows a high level of intermittency with
an approximately exponential increase at small scales, also in
agreement with the strong non-Gaussian tails of its PDFs
shown above. This gives direct evidence that phase coher-
ence is the source of intermittency. One can note in particular
the similarity of the curve of the flatness of B, (r) (Fig. 8) and
the curves of the coherence level (Fig. 6).

IV. PHASE COHERENCE AND ENERGY CASCADE

The question now is whether the relatively moderate level
of coherence Cg(g,7)~0.3 is crucial for the physics of the
mirror structures observed here. Or, equivalently, whether
the signals B(7), Bg(7), and B(f) involve an energy cascade,
as each of them has a power law spectrum, the two latter
showing furthermore an increasing intermittency at small
scales. Answering these questions requires a look at the
asymmetries of the PDFs, whose estimation can be obtained
from the third-order SFs for signed increments. It is indeed
well known that the skewness provides information on non-
linearities and energy cascades [24]. For instance, in hydro-
dynamic turbulence the so-called Kolmogorov four-fifths law
S(3.,1) :—%el for longitudinal velocity increments proves that
energy is transferred over scales with a positive constant flux
€ [24]. Similarly, in incompressible magnetohydrodynamics
(MHD) turbulence Yaglom’s law on increments of the El-
sasser variables (mixing the plasma velocity and the mag-
netic field) predicts S(3,l)=—%el [27]. We emphasize that
these simple equations are derived from the general von
Kéarman-Howarth (vKH) equation only at the cost of addi-
tional assumptions of time stationarity, space homogeneity,
and local (or full) isotropy. A recent derivation of the vKH
equation for incompressible isotropic Hall MHD has been
obtained in [28]. In data analyses, any rigorous demonstra-
tion of an energy cascade must rest upon the correspondence
between these predicted exact relations and their experimen-
tal measurements. Nonzero values of S(3,/) can then be in-
terpreted as evidence of a turbulent cascade, and a negative
(positive) sign of S(3,1) as a direct (inverse) energy cascade
[29,30]. Here we deal with mirror mode turbulence for which
no vKH equation has been derived so far. The physics of the
mirror turbulence is indeed more complex since compress-
ibility, anisotropies, and kinetic effects are present [10]. Al-
though some progress has been achieved recently in fluid
formulation of the nonlinear dynamics of these modes [26], a
fluidlike turbulence theory of mirror modes is still out of
reach. Nevertheless, in spite of these theoretical limitations,
we show below that S(3,1) calculated for the magnetic field
increments is useful for revealing additional information
about the mirror mode turbulence. We note that the other
Cluster plasma data (density, velocity, and pressure) are
available only at low time resolution (4 s) which cannot
allow investigation of the time scales considered here
(7<10s).

Comparison of the normalized skewnesses of the four
times series shows that over two decades of scales Bppp(f),
Bc(t) and Bg(t) have almost zero skewness, suggesting the
absence of energy transfers (Fig. 9). It is interesting to notice
that, despite the fact that B-(¢) has a high degree of coher-
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FIG. 9. (Color online) Normalized skewness of B(¢) (solid
line), Bg() (dotted line), B(r) (dashed line), and Bppg(r) (red line).

ence, no energy transfer is observed over about two decades
of scale. Note, however, a sharp increase of the skewness at
the scale 7~ 0.1, which is of the same order as the size of the
coherent structure in B(t), since asymmetry is expected to
appear at this scale. This result can be used to differentiate
between scaling laws generated by a turbulent cascade and
those due to a single coherent structure as in the case of
Bc(2). On the other hand, By(7) has a finite and negative
skewness below the scale 7~8 s and tends to zero at the
very small scales 7<<(.2 s, indicating the presence of finite
energy transfers from large to small scales.

To further check the possibility of the existence of a con-
stant energy flux over these scales, we calculate the compen-
sated third-order SFs of signed increments: S,(3,7)/ 72 As
we can see, a relatively flat zone of scales that spans from
7~0.2 to ~3 s occurs (Fig. 10). Considering the theoretical
limitations explained above, these observations can be inter-
preted only on the basis of analogies with hydrodynamics or
MHD turbulence. Let us then assume that a vKH equation
for mirror mode turbulence exists. If this equation reduces to
a Yaglom-type equation [i.e., a linear relation between the
energy flux e and S(3,/)] under the assumptions of (space)
time (homogeneity) stationarity, then one may view this zone
as an inertial range of the mirror modes, for which the scal-
ing S,(3,7) ~—€em? is a good approximation. The numerical
values of € can be inferred from Fig. 10 for possible com-
parisons with theories of mirror mode turbulence that still
need to be built. The existence of a constant energy flux for
the same range of scales evidenced in [10] is strong support
for the proposed cascade scenario of the mirror modes. The
increase of phase coherence in the same interval of scales
suggests furthermore that these mirrors should be viewed as
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= 107
~5 107*
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FIG. 10. (Color online) S(3, 7) calculated for signed increments:
positive values (black) and negative values (red) compensated by

72
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coherentlike structures rather than randomlike modes.

We notice that random phases do not necessarily imply
absence of energy cascade. It is indeed well known that weak
turbulence theories lead to energy cascades with predicted
scaling even if random phases are generally assumed through
the RPA [18,20]. Our results here concern the specific case of
mirror structures, for which we prove that the structure of the
phases is crucial. However, one could use the method pre-
sented in this work to test, in observations as well as in
numerical simulations of weak turbulence, whether the en-
ergy cascades actually pass the test of phase randomization
used here.

V. CONCLUSIONS

We have described a method to detect coherent structures
in turbulent signals by using the technique of surrogate data
sets and their SFs as discriminating statistics. We have intro-
duced a general coherence index for estimating the degree of
coherence as a function of scales, and have shown that its
different orders (¢g=1,3,4) provide mainly the same infor-
mation. We have shown that the second-order SFs can be
used to quantify how accurately the surrogate data reproduce
the power spectra, and to estimate the largest scale for which
the SFs can be meaningfully calculated.

Using the PDFs of the increments of the observed and
surrogate data, we have shown that the Fourier phases are
responsible for creating the non-Gaussian tails of the PDFs,
i.e., intermittency. The relationship between coherence and
intermittency has been proved also by showing that the co-
herence index, estimated from the first-order SFs, can repro-
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duce the information given by the flatness, usually used as
the only measure of intermittency. This conclusion can be
useful in situations where computation of high-order SFs is
not possible (because, for instance, of limited stationarity or
homogeneity) [4,31]. We have shown how one can use the
technique to investigate asymmetries of the PDFs and prove
the existence of energy transfers over a wide range of scales.
When the method was applied to magnetosheath data, we
have been able to bring strong evidence supporting the sce-
nario of energy cascade of mirror structures previously sug-
gested in [10].

We notice finally that many aspects have been studied
(not shown in the present work) related to the choice of the
windowing function, the conditioning (elimination of poor
statistics) [32], the stability of the results for coherence with
respect to randomization, and generation of other possible
surrogates. All these technical aspects will be addressed in a
separate presentation, including more applications to experi-
mental data. Combination of multipoint data techniques such
as the k-filtering method [33] to analyze power spectra and
dispersion properties with the technique of surrogate data to
study intermittency offers certainly a more complete and
promising package to investigate space-plasma turbulence.
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